Section 3.5 Higher Derivatives

- (1) Lagrange and Leibniz Notation
- (2) Detecting Increase/Decrease
- (3) Concavity
- (4) Higher Derivatives and Implicit Differentiation

Notation for Higher Derivatives

Lagrange:
$$f'(x), f''(x), f'''(x), f^{(4)}(x), \dots, f^{(n)}(x), \dots$$

<u>Leibniz:</u> $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$, ..., $\frac{d^ny}{dx^n}$, ...

Example: If $f(x) = x^2 + 3\ln(x)$, then

$$f'(x) = \frac{dy}{dx} = 2x + 3x^{-1} \qquad f'''(x) = \frac{d^3y}{dx^3} = 6x^{-3}$$

$$f''(x) = \frac{d^2y}{dx^2} = 2 - 3x^{-2} \qquad f^{(4)}(x) = \frac{d^4y}{dx^4} = -18x^{-4}$$

Higher Derivatives of Polynomial Functions

$$\begin{aligned} h(t) &= -4.9t^2 + v_0 t + h_0 \\ h'(t) &= -9.8t + v_0 \\ h''(t) &= -9.8 \\ h'''(t) &= 0 \\ h''''(t) &= 0, \ h^{(5)}(t) = 0, \ \text{etc.} \end{aligned}$$

Rule: If p(x) is a polynomial and *n* is greater than the degree of p(x), then $p^{(n)}(x) = 0$.

Example: Evaluate

$$\frac{d^{2021}}{dx^{2021}} \left(x^{2005} - 86x^{2001} - 33x^{1984} - 10x^{1066} + 1974x^{105} - 9378 \right).$$

Direction of Change

If f'(x) > 0 on an interval, then f is **increasing** on that interval.

If f'(x) < 0 on an interval, then f is **decreasing** on that interval.

Let f(x) be a differentiable function and let (a, b) be an interval in the domain of f.

Concavity

f(x) is **concave up** on (a, b) if the graph of f lies **above** the tangent line at every point in (a, b).

f(x) is **concave down** on (a, b) if the graph of f lies **below** the tangent line at every point in (a, b).

by Joseph Phillip Brennan

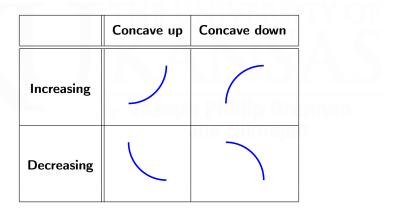
Concavity and the Second Derivative

If f''(x) > 0 on (a, b), then f is concave **up** on (a, b).

If f''(x) < 0 on (a, b), then f is concave **down** on (a, b).

Direction AND Concavity

Knowing direction (increasing/decreasing) and concavity (up/down) tells us that the curve has one of four basic shapes.



Direction and Concavity

Example I: Let $f(x) = x^3 - x$.

- On what intervals is f increasing/decreasing?
- On what intervals is f concave up/down?

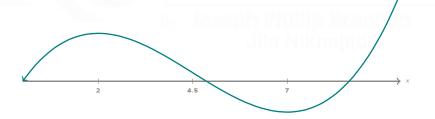
 $f'(x) = 3x^2 - 1$ f''(x) = 6x

Direction and Concavity

Example II: Sketch the graph of a continuous function f satisfying the following:

- (i) f'(x) > 0 on the intervals $(-\infty, 2)$ and $(7, \infty)$.
- (ii) f'(x) < 0 on the interval (2,7).
- (iii) f''(x) < 0 on the interval $(-\infty, 4.5)$.

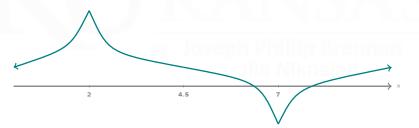
(iv) f''(x) > 0 on the interval $(4.5, \infty)$.



Direction and Concavity

Example III: Sketch the graph of a continuous function f satisfying the following:

- (i) f'(x) > 0 on the intervals $(-\infty, 2)$ and $(7, \infty)$.
- (ii) f'(x) < 0 on the interval (2,7).
- (iii) f''(x) > 0 on the interval $(-\infty, 4.5)$.
- (iv) f''(x) < 0 on the interval $(4.5, \infty)$.



An inspection of the graph reveals that f' is undefined at x = 2 and at x = 7. So f'' is also undefined at those values.

Factorials Review

n! is the number $n(n-1)(n-2)\cdots(3)(2)(1)$, thus

$$1! = 1$$

$$2! = 2$$

$$3! = 6$$

$$4! = 24$$

$$5! = 120$$

$$n! = n(n-1)! = n(n-1)(n-2)! = \dots$$

By convention 0! = 1.

Example IV: Calculate the first four derivatives of $y = x^{-1}$. Then find the pattern and determine a general formula for $y^{(n)}$.

$$y^{(0)} = x^{-1}$$

$$y^{(1)} = (-1)x^{-2} = -x^{-2}$$

$$y^{(2)} = (-1)(-2)x^{-3} = 2x^{-3}$$

$$y^{(3)} = (-1)(-2)(-3)x^{-4} = -6x^{-4}$$

$$y^{(4)} = (-1)(-2)(-3)(-4)x^{-5}$$

$$y^{(n)} = (-1)^n n! x^{-(n+1)}$$

Higher Derivatives and Implicit Differentiation

Example V: Find y'' for the ellipse defined implicitly by

$$4x^2 + y^2 = 9.$$

Implicitly differentiating with respect to x yields

8x + 2yy' = 0.

 $y' = \frac{-4x}{x}$.

(*)

(**)

KUKANSAS

which we can solve for y' to get

8 + 2(yy'' + y'y') = 0.

Solve for y'' and then plug in (**):

$$y'' = \frac{-4 - y'y'}{y} = \frac{-4 - \left(\frac{-4x}{y}\right)^2}{y} = \frac{-4y^2 - 16x^2}{y^3}$$

Higher Derivatives and Implicit Differentiation

Example V: (continued)

